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Executive summary 
Immunomodulation as a toxicity endpoint is currently lacking experimental data and hazard information for 
several groups of chemicals. The aim of Deliverable D2.1 was to identify chemicals that possess known 
or likely immunomodulatory properties and humans are likely exposed to, and what yet unknown 
immunomodulators could look like (Figure 1). Existing bioactivity data for 11 endocrine-disruptive and 
immunomodulatory endpoints from online repositories as well as from literature were combined with 
exposure predictions of 83,693 chemicals from physiologically-based toxicokinetic modelling in virtual 
populations. Mixture effects were calculated under the assumption of concentration additivity. The 
identified set of 7,874 chemicals allows for general scoring of priority and potential relevance of chemicals. 
The results of this prioritisation constitute the basis to decide which chemicals to include in mixture 
experiments in the ENDOMIX project WP2, 3 and 4. In the next step, we will investigate in WP1 if the 
predicted immunomodulators and mixture effect are actually present in human samples by evaluating 
existing cohort data and reanalysing non-target screening data. The identified chemicals and realistic 
mixtures will be tested for their bioactivity and mixture toxicity in established bioassay test batteries and 
novel effect-based methods. All tables that contain the collected and generated data are collated in Annex 
A, which is accessible on Zenodo (DOI: 10.5281/zenodo.14499300).  

 

 
Figure 1: Outline of D2.1 and number of identified and prioritized chemicals in simulated realistic mixtures. CRC = 
concentration-response curves. 
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1. Introduction 
The human chemical exposome is a complex cocktail of chemicals with diverse properties and from 
various sources of exposure (Escher et al., 2020b; Vermeulen et al., 2020). We only have information on 
a small fraction of the chemical space that encompasses this chemical part of the exposome (Samanipour 
et al., 2024). As it is practically impossible to unravel the totality of the underlying chemicals, it is necessary 
to prioritise which chemical features seem to be of highest concern for health. Most often this results in a 
selection of chemical features based on exposure data such as frequent detection, or high signal 
intensities or concentrations. Another focus lies on compounds that were successfully annotated and show 
a high potency or bioactivity in test systems of selected toxicity endpoints.  

We used a high-throughput in silico workflow, which is outlined in Figure 2 that combines measures of 
exposure and bioactivity to generate a list of chemicals that are likely to be present in human blood 
samples and contribute to mixture effects for endocrine-disruptive and immunomodulatory endpoints.  

 

Figure 2: Approach for prioritization of chemicals and mixtures for testing in ENDOMIX. ADME = Absorption, distribution, 
metabolism, and elimination. 
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2. Data and models used  
The data was collected from public databases, or generated using models and source code from open-
access repositories. The workflow was adapted from Braun and Escher (2023). The data processing was 
performed in R version 4.1.3 and Microsoft Excel.  

2.1 Compound selection and properties 
The selection of the compounds was mainly focused on lists of chemicals that were both reported 
endocrine disruptors or in general reported to be found in human blood. One major source were chemicals 
included in lists related to endocrine disruption and human exposure of the CompTox dashboard (Williams 
et al., 2017), namely “BISPHENOLS”, “COMPARA”, “EDSP21LIST1”, “EDSP21LIST2”, “EDSPUoC”, 
“EUCOSMETICS”, “HSDB2019”, “IRIS”, “PFASMASTERLISTV2”, “REACH2017”, “SUSDAT”, 
“SWISSPHARMA”, “TOXCAST_E1K”, “TOXCAST_INVITRODB_v4_1” (Williams et al., 2017). Further, we 
included reports of chemicals found in human blood from the curated database ExposomeExplorer (Neveu 
et al., 2016; Neveu et al., 2019), the Human Metabolome Database (Wishart et al., 2021), as well as the 
Blood Exposome Database (Barupal & Fiehn, 2019). The databases and repositories were accessed on 
2024/02/21. 

Identifiers such as CAS number, SMILES, InChIKey, and DTXSID were assigned as reported on the 
CompTox dashboard (Williams et al., 2017). The SMILES of the chemicals were transformed into SDF 
format using the open-access tool OpenBabel (O'Boyle et al., 2011). The generated SDF files were used 
as input for quantitative structure-activity relationship (QSAR) models included in OPERA version 2.9 
(https://github.com/kmansouri/OPERA/releases/tag/v2.9.1). Predicted were physicochemical properties 
such as molecular weight, acidity constants (pKa), fraction of the neutral form at pH 7.4, the Henry constant, 
water solubility, and melting point. Absorption, distribution, metabolism, and elimination (ADME) properties 
such as fraction unbound in plasma or human intrinsic hepatic clearance were also predicted using 
OPERA 2.9. The ChemmineR R package version 3.46.0 was utilized to calculate octanol-water partition 
coefficients Kow (Cao et al., 2008).  

Chemical exposure in doses of mgchemical kg-1 day-1 was predicted using models developed within the 
Systematic Empirical Evaluation of Models (SEEM) approach of the U.S. EPA (Wambaugh et al., 2018). 
If possible, the exposure was predicted via the consensus model as included in the SEEM3Predictor R 
package (https://github.com/HumanExposure/SEEM3RPackage/tree/main/SEEM3Predictor). This meta 
model predicted exposure based on four models and datasets, which were established using characterized 
chemicals reported in the National Health and Nutrition Examination Survey (NHANES). This means 
exposure for chemicals from diet, from consumer products, pesticides, or industrial chemicals (Ring et al., 
2019). This required molecular fingerprints in the 729-bit toxprint format, which were generated from the 
SDF files using the software ChemoTyper version 1.3 (https://github.com/mn-am/chemotyper). For 
chemicals that could not be predicted with the consensus model, a simpler heuristic model based on 
molecular weight as included in the SEEM2Predictor R package 
(https://github.com/HumanExposure/SEEM3RPackage/tree/main/SEEM2Predictor) was applied 
(Wambaugh et al., 2014). 

In total 83,693 chemicals were collected as dataset for the prioritization process (Annex A Table 1).  

2.2 Bioassay data and processing 
The toxicity endpoints considered for the prioritization was mainly focused on cell-based assays that are 
included in the 10k library of Tox21 and were accessible on the CurveSurfer interface of the Integrated 
Chemical Environment (Bell et al., 2017).  

 

 



 

6 
 
 

In total 673 cell-based assays were selected (Annex A Table 2, Figure 3). This included the following 10 
endocrine disruption endpoints:  

• estrogenicity (116 assays),  

• steroidogenesis (109 assays),  

• androgenicity (74 assays),  

• thyroid signalling (70 assays),  

• activation of peroxisome proliferator-activated receptors (18 assays),  

• activation of retinoid-x receptors (10 assays),  

• activation of retinoic acid receptors (9 assays),  

• activation of progesterone receptors (6 assays),  

• activation of glucocorticoid receptors (5 assays),  

• activation of the aryl hydrocarbon receptor (1 assay).  

Immunomodulatory assays were all combined as one endpoint, which encompassed 255 assays. 

In total 443,261 concentration response curves were collected (Annex A Table 3) and processed with an 
openly accessible R script (https://git.ufz.de/braung/automatedbioassayscreening). The evaluation was 
based on the tcpl R package version 3.1.0 (Filer et al., 2017), yet enforced the hill model for all active 
hitcalls. The output was the µM effect concentration that results in 10% absolute effect (EC10) or a 1.5-fold 
induction (ECIR1.5). For simplicity, all effect concentrations were eventually referred to as ECbenchmark. A 
confidence of the fit and derived effect concentrations was calculated which was the product of the 

coefficient of determination R2 and 1- |
standard error EC10/ECIR1.5

EC10/ECIR1.5
|. A confidence threshold of 0.7 was used to 

consider a fit as valid. If a chemical was evaluated as active in several assays per effect endpoint, the 
median consensus effect concentration was derived (Annex A Table 4). 

 

Figure 3: Bioassays included in the mixture prioritization. EDC = Endocrine-disrupting chemicals. ADME = Absorption, 
distribution, metabolism, and elimination. 
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2.3 Baseline toxicity for data gap-filling 
Baseline toxicity is the minimum toxicity a chemical expressed due to unspecific interaction with cellular 
membranes and other cell constituents. Baseline cytotoxicity, e.g. the 10% cytotoxicity concentration IC10 
can be predicted with quantitative structure-activity relationships from liposome-water distribution ratios, 
Dlip/w (Lee et al., 2021). This baseline toxicity was predicted for all 83,693 chemicals as a surrogate for 
potency (Annex A Table 1).  

Structural read-across was utilized to fill data gaps in combination with predicted baseline toxicity. The 
toxprint fingerprints of all chemicals were used to calculate structural similarity to sets of confidently active 
chemicals per endpoint (Annex A Table 4), based on the Tanimoto coefficient (Willett et al., 1998).  

There were three groups of fingerprints, namely perfect, very good, and suitable fingerprints. Perfect 
fingerprints show a 95% structural similarity, while molar mass deviated within two folds and Dlip/w deviated 
at maximum by a factor of ten. Very good fingerprints had a 90% structural similarity, molar mass deviated 
within two folds and Dlip/w was allowed to deviate within two orders of magnitude (factor of 100). Suitable 
fingerprints showed 80% similarity and molar mass deviated within three folds. The specificity ratios (SR) 
of the highest tiered fingerprints were used to predict effect concentrations of chemicals without 
experimental data by dividing the predicted baseline toxicity IC10 by the predicted SR. This meant first 
perfect fingerprints, second very good fingerprints, third suitable fingerprints. If more than one fingerprint 
was available per group, the specificity ratios were averaged. The respective predicted effect 
concentrations were labelled as based on “fingerprint similarity”.  

2.4 Exposure modelling using high-throughput toxicokinetics 
Potential plasma concentrations were calculated based on the available physicochemical and ADME 
properties via the httk R package version 2.2.2 (Pearce et al., 2017). Per chemical the 0%, 10%, 50%, and 
90% steady-state micromolar plasma concentrations were approximated via Monte Carlo simulation 
utilizing physiological data of 20,000 individuals included in the httk virtual population (Annex A Table 1). 
The calculations were performed under the assumption of the well-stirred model and that clearance and 
bioavailability is restricted to free or unbound concentrations.  

Per mixture design, randomly generated mixtures were considered. For each random mixture the 
concentration per chemical was drawn from the quantiles with different likelihoods: 80% probability of 
selecting the 0% quantile, 5% probability of selecting the 10% quantile, 10% probability of selecting the 
50% quantile, 5% probability of selecting the 90% quantile. In total, 100,000 different mixtures were 
simulated per mixture design. The concentration ratios of the simulated mixtures were kept constant, while 
the absolute concentrations were scored to 10% absolute effect. Effects of each mixture were calculated 
assuming a linear concentration response for low effect levels and concentration addition as discussed in 
Escher et al. (2020a).  

The mixture designs encompassed A) a simulation of all chemicals, B) chemicals that had logDlip/w within 

the applicability domain of the baseline toxicity QSAR model (0 ≤ logDlip/w ≤ 8), C) chemicals that were 

reported in the human metabolome database, D) chemicals that only had valid experimental bioactivity 
data. All mixture designs were then united and underwent prioritization and scoring. 

3. Prioritisation and scoring strategies 
Chemicals that were modelled to be present in human blood and also had assigned bioactivity data, were 
considered for further prioritization and scoring.  

3.1 Scoring and generation of final list 
For each of the 11 bioactivity endpoints, all chemicals that contributed at least once to 90% of the 
cumulative mixture effect within the random mixtures were included in the final prioritization list. The final 
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score was a product of A) the frequency factor, meaning the ratio of all the times the chemical contributed 
to 90% of a mixture effect and the absolute number of occurrence, B) an exposure score which is the 
mean of the binary inclusion (1 = present, 0 = not present) in lists as ExposomeExplorer, Blood Exposome 
Database, the U.S. EPA Integrated Risk Information System (IRIS), the U.S. EPA Chemical and Products 
Database (CPDat), and NHANES, C) a property score which was the mean of binary assignment of 1 for 

logKow ≤ 8, logKwa ≥ 4, and logKwa > -4. Further, the total number of PubMed articles as well as number of 

articles that included both the name of the chemical and keywords for the bioactivity endpoint were 
included. PubMed was accessed via the pubmedR R package version 0.0.3 
(https://github.com/massimoaria/pubmedR). An activity ratio and the respective number of considered 
experimental assays was also reported, which represented the ratio of positive hitcalls and all tested 
bioassays per bioactivity endpoint. This resulted in a set of 7,874 chemicals that were prioritized across 
all 11 bioactivity endpoints (Annex A Table 5).  

4. Design and selection of mixtures 
The set of 7,874 chemicals (Annex A Table 5) will be used in the ENDOMIX project to help defining 
mixtures of endocrine disruptors and immunomodulators for experimental testing. As a first step, two main 
groups of mixtures were defined (Section 4.1 and 4.2) that are now going forward to mixture formulation 
and testing bioassays of diverse complexity, starting with the high-throughput screening assays in WP2. 
In the future, additional mixtures will be identified by matching non-target screening data with the prioritised 
potential mixture effect drivers (section 4.3).  

4.1 Mixtures of broadly analysed endocrine disruptors across Europe 
To define mixtures that best represent chemical exposure across Europe, eight different studies, including 
studies from ENDOMIX partners, or databases were considered. This included reports from the INMA 
cohort (Montazeri et al., 2023), the HELIX project (Haug et al., 2018), the E3N cohort (Frenoy et al., 2024), 
the PELAGIE cohort (Warembourg et al., 2015), the ExposomeExplorer database (Neveu et al., 2019) 
which was accessed on 2024/08/28, and the HBM4EU dashboard (https://hbm.vito.be/eu-hbm-dashboard) 
which was accessed on 2024/08/26.  

All concentrations were transformed to molar blood concentrations. Concentrations reported in ng/glipid 
were transformed to molar concentrations assuming a lipid content of 0.4% in human plasma or serum 
with a density of 1.025 g/mL. Urine concentrations in µg/gcreatinine were transformed to daily intake rates in 
mgchemical/kgbodyweight/day via Bayesian inference under the assumption of a daily urine production of 1.4 L 
and an average creatinine level of 122.6 mg/DL as included in the bayesmarker R package version 
0.0.0.9000 (Stanfield et al., 2022). The respective daily intake was then used to calculate quantiles of 
plasma concentrations via Monte Carlo simulation in httk as discussed in section 3.4.  

132 chemicals were selected using this approach (Annex A Table 6). Based on use and manufacturing 
information available from PubChem, chemicals were sorted into use groups and if deemed necessary 
use and structural subgroups. Low, mean or median, and high molar concentrations were collected for 
each study, depending on the values reported. Overall, the lowest and highest as well as the median 
concentration across all studies per chemical were calculated and are listed in Annex A Table 6.  

Criteria for selection were 1) high numbers of predicted relevance among the 11 bioactivity endpoints, 2) 
representation across many studies with a minimum of two independent studies considered, 3) structural 
diversity, 4) diversity in concentration levels.  

30 chemicals from the five main assessment groups including phthalates (PHT), per- and polyfluoroalkyl 
substances (PFAS), polybrominated diphenyl ethers and polychlorinated biphenyls (BDEPCB), pesticides 
(PEST), phenols (PHEN), and polycyclic aromatic hydrocarbons (PAHs) were selected (Annex A Table 7). 
For chemicals that were reported as metabolites, the most likely precursors were selected at the same or 
median concentration level instead. The intention was to be more representative of mixtures found in blood 
rather than urinary metabolites.  
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4.2 Complex mixtures on the level of individuals 
For the testing of complex mixtures with more than ten components, the exposure data of 294 up to 473 
chemicals as reported in Braun et al. (2024) will be utilized. These complex mixtures and their single 
chemical components will be tested in cell-based high-throughput test systems to test for confirmation of 
mixture hypotheses such as concentration addition and the “Something from Nothing” phenomenon (Silva 
et al., 2002). The “Something from Nothing” phenomenon is based on the observation that chemicals that 
occur below individual effect thresholds, still contribute to mixture toxicity and can cause cumulative 
effects. The “Something from Nothing” is commonly observed for complex environmental mixtures , but 
was also confirmed to be relevant in human samples (Braun et al., 2024). The priority list will be used as 
a criterion for chemical selection.  

4.3 Mixtures of newly identified and potential immunomodulators 
The 7,874 chemicals reported in the priority list will be part of a ground-truthing process. They will be used 
as suspects for annotation of data acquired from liquid and gas chromatography coupled to high-resolution 
mass spectrometry. The samples and extracts utilized for the annotation originate from the cohorts of the 
projects and studies EPIC (Riboli, 1992), AIRWAVE (Elliott et al., 2014), PELAGIE (Warembourg et al., 
2015), EXPANSE (Vlaanderen et al., 2021), and ATHLETE (Vrijheid et al., 2021). Successfully confirmed 
analytes will then be tested as single chemicals as well as mixtures in realistic concentration ratios in the 
established biotest batteries that target immunomodulation, to verify their predicted relevance and 
bioactivity.  

5. Conclusion 
A high-throughput in silico workflow was utilized to generate a list of potential immunomodulatory 
endocrine disruptors, which are expected to be relevant for human exposure. The list of 7,874 chemicals 
was generated considering 443,261 concentration-response data of 673 cell-based assays targeting 
endocrine disruption and immunomodulation. The list was and will be used for the prioritisation and 
selection of chemicals for experimental testing and design of mixtures in the ENDOMIX project.  
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